|
Latent semantic indexing (LSI) is an indexing and retrieval method that uses a mathematical technique called singular value decomposition (SVD) to identify patterns in the relationships between the terms and concepts contained in an unstructured collection of text. LSI is based on the principle that words that are used in the same contexts tend to have similar meanings. A key feature of LSI is its ability to extract the conceptual content of a body of text by establishing associations between those terms that occur in similar contexts.〔Deerwester, S., et al, Improving Information Retrieval with Latent Semantic Indexing, Proceedings of the 51st Annual Meeting of the American Society for Information Science 25, 1988, pp. 36–40.〕 LSI is also an application of correspondence analysis, a multivariate statistical technique developed by Jean-Paul Benzécri in the early 1970s, to a contingency table built from word counts in documents. Called Latent Semantic Indexing because of its ability to correlate semantically related terms that are latent in a collection of text, it was first applied to text at Bellcore in the late 1980s. The method, also called latent semantic analysis (LSA), uncovers the underlying latent semantic structure in the usage of words in a body of text and how it can be used to extract the meaning of the text in response to user queries, commonly referred to as concept searches. Queries, or concept searches, against a set of documents that have undergone LSI will return results that are conceptually similar in meaning to the search criteria even if the results don’t share a specific word or words with the search criteria. == Benefits of LSI == LSI overcomes two of the most problematic constraints of Boolean keyword queries: multiple words that have similar meanings (synonymy) and words that have more than one meaning (polysemy). Synonymy is often the cause of mismatches in the vocabulary used by the authors of documents and the users of information retrieval systems. As a result, Boolean or keyword queries often return irrelevant results and miss information that is relevant. LSI is also used to perform automated document categorization. In fact, several experiments have demonstrated that there are a number of correlations between the way LSI and humans process and categorize text.〔Landauer, T., et al., Learning Human-like Knowledge by Singular Value Decomposition: A Progress Report, M. I. Jordan, M. J. Kearns & S. A. Solla (Eds.), Advances in Neural Information Processing Systems 10, Cambridge: MIT Press, 1998, pp. 45–51.〕 Document categorization is the assignment of documents to one or more predefined categories based on their similarity to the conceptual content of the categories. LSI uses ''example'' documents to establish the conceptual basis for each category. During categorization processing, the concepts contained in the documents being categorized are compared to the concepts contained in the example items, and a category (or categories) is assigned to the documents based on the similarities between the concepts they contain and the concepts that are contained in the example documents. Dynamic clustering based on the conceptual content of documents can also be accomplished using LSI. Clustering is a way to group documents based on their conceptual similarity to each other without using example documents to establish the conceptual basis for each cluster. This is very useful when dealing with an unknown collection of unstructured text. Because it uses a strictly mathematical approach, LSI is inherently independent of language. This enables LSI to elicit the semantic content of information written in any language without requiring the use of auxiliary structures, such as dictionaries and thesauri. LSI can also perform cross-linguistic concept searching and example-based categorization. For example, queries can be made in one language, such as English, and conceptually similar results will be returned even if they are composed of an entirely different language or of multiple languages. LSI is not restricted to working only with words. It can also process arbitrary character strings. Any object that can be expressed as text can be represented in an LSI vector space.〔Zukas, Anthony, Price, Robert J., Document Categorization Using Latent Semantic Indexing, White Paper, Content Analyst Company, LLC〕 For example, tests with MEDLINE abstracts have shown that LSI is able to effectively classify genes based on conceptual modeling of the biological information contained in the titles and abstracts of the MEDLINE citations. LSI automatically adapts to new and changing terminology, and has been shown to be very tolerant of noise (i.e., misspelled words, typographical errors, unreadable characters, etc.). This is especially important for applications using text derived from Optical Character Recognition (OCR) and speech-to-text conversion. LSI also deals effectively with sparse, ambiguous, and contradictory data. Text does not need to be in sentence form for LSI to be effective. It can work with lists, free-form notes, email, Web-based content, etc. As long as a collection of text contains multiple terms, LSI can be used to identify patterns in the relationships between the important terms and concepts contained in the text. LSI has proven to be a useful solution to a number of conceptual matching problems.〔Ding, C., A Similarity-based Probability Model for Latent Semantic Indexing, Proceedings of the 22nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999, pp. 59–65.〕〔Bartell, B., Cottrell, G., and Belew, R., Latent Semantic Indexing is an Optimal Special Case of Multidimensional Scaling, Proceedings, ACM SIGIR Conference on Research and Development in Information Retrieval, 1992, pp. 161–167.〕 The technique has been shown to capture key relationship information, including causal, goal-oriented, and taxonomic information. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「latent semantic indexing」の詳細全文を読む スポンサード リンク
|